Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification.

نویسندگان

  • Ge-Hong Sun-Wada
  • Hiroyuki Tabata
  • Nobuyuki Kawamura
  • Minako Aoyama
  • Yoh Wada
چکیده

The nascent phagosome progressively establishes an acidic milieu by acquiring a proton pump, the vacuolar-type ATPase (V-ATPase). However, the origin of phagosomal V-ATPase remains poorly understood. We found that phagosomes were enriched with the V-ATPase a3 subunit, which also accumulated in late endosomes and lysosomes. We modified the mouse Tcirg1 locus encoding subunit a3, to express an a3-GFP fusion protein. Live-cell imaging and immunofluorescence microscopy revealed that nascent phagosomes received the a3-GFP from tubular structures extending from lysosomes located in the perinuclear region. Macrophages from a3-deficient mice exhibited impaired acidification of phagosomes and delayed digestion of bacteria. These results show that lysosomal V-ATPase is recruited directly to the phagosomes via tubular lysosomes to establish the acidic environment hostile to pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages.

The best characterized survival mechanism of Mycobacterium tuberculosis inside the macrophage is the inhibition of phagosomal maturation. Phagosomal maturation involves several steps including fusion with lysosomes and acidification. However, it has not been elucidated which components of phagosomal maturation correlate with growth restriction of virulent mycobacteria in human macrophages, and ...

متن کامل

Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages.

Acidification of macrophage phagosomes serves an important bactericidal function. We show here that the redox-sensitive transient receptor potential (TRP) cation channel TRPM2 is expressed in the phagosomal membrane and regulates macrophage bactericidal activity through the activation of phagosomal acidification. Measurement of the TRPM2 current in phagosomes identified TRPM2 as a functional re...

متن کامل

Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification

The mechanisms underlying the survival of intracellular parasites such as mycobacteria in host macrophages remain poorly understood. In mice, mutations at the Nramp1 gene (for natural resistance-associated macrophage protein), cause susceptibility to mycobacterial infections. Nramp1 encodes an integral membrane protein that is recruited to the phagosome membrane in infected macrophages. In this...

متن کامل

Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis

We analyzed the distribution, fate, and functional role of phosphatidylinositol 4-phosphate (PtdIns4P) during phagosome formation and maturation. To this end, we used genetically encoded probes consisting of the PtdIns4P-binding domain of the bacterial effector SidM. PtdIns4P was found to undergo complex, multiphasic changes during phagocytosis. The phosphoinositide, which is present in the pla...

متن کامل

NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells Running title: Phagosomal pH regulation in human DC

The phagocyte NADPH oxidase (NOX2) is critical for the bactericidal activity of phagocytic cells and plays a major role in innate immunity. We showed recently that NOX2 activity in mouse dendritic cells (DC) prevents acidification of phagosomes, promoting antigen crosspresentation. In order to investigate the role of NOX2 in the regulation of the phagosomal pH in human DC, we analyzed the produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2009